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NTRODUCT I ON

Consider the Markovian Decision Process (MDP) defined by the

following objects;

State Space S - (I, 2, 3, ... , N} , for finite N,

Action Space A - {8, a2 , ... , a M  , for finite M,

Cost Set C m {C(i, a.) : iES, a.cA}j J

Transition Probabilities = {qij(aK) : i,jcS, aK cA

Discount Factor a, such that o<c<l.

The problem is to find a policy for taking actions which minimizes the

total expected discounted cost over the infinite future, given the

initial state of the process.

A stationary policy for (MDP) is defined as a map f : S- A.

Howard [2] atialyzed (MDP's) having finite state and action spaces and

proved that an optimal stationary policy (i.e. a stationary policy

which minimizes the total expected discounted cost) always exists.

The Howard Policy Improvement Routine is a method by which an optimal

stationary policy for (MDP) may be found.

Suppose now, that we are given the (MOP) as defined above, but

that we are not allowed to observe the state at any observation point

t = 0, I, 2, .... Suppose also, that we are not allowed tc observe
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the cost C(Xt,at) at any observation points t 0, I, 2, .... In

other words, the total cost will be assessed at infinity. Finally,

suppose that we are allowed to observe the initial probability distri-

bution over the state space S. In this paper we develop a model for

analyzing this problem and present s.iTe preliminary results. A rather

thorough treatment of the problem of ur,observable states and unobser-

vable costs for (MIDP's) having two states and two actions may be found

in Steele [3].

THE MODEL

In an effort to analyze the above problem, we define the follow-

ing objects.

{All probability distributions over S)

N
(i tP P2 ' "'I PN) rEN :o< PiW, Z P1 i

i-1, 2, ..., NI

where E is N-dinfcnsional Euclidean space and we let P. be the
NI

probability of being in state i;

the set = A- {al, a2, ... , aM); the transition

matrices (a) [qij (a)]; and Cie cost vectors,

(aK ( K[I,a i C[N,aK]).

We note that if the distribution over S is T an' we take action

ac , then the new distribution over S will be gion by P'=-PQ(aK).

The expected cost, (C,aK), of having the distribution F and taking

action aK will be given as the Inner product

N
a ) = < K)> E . PiC(i,a,).

K K 1=1
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At this point, we note that the new distribution P' depends only on

the current distribution P and the current action a K' i.e. P=PQ(aK),

therefore, we see that we now have a new Marknv an Decision Process

(M6P) defined by the objects

State Space {all probability distributions over S)

Action Space = A = (aa 2,..,a MI , and

Cost Set Z - {INP,a K) : Tc, a K )

Discount Factor a, such that o<a<].

The set of all stationary policit3 for (?iDP) is given by

F= {f - A-A). For any such fcF and initial state PE, the0

total expected discounted cost is given by

Vf (To) = t tf[FtJ)

= t (Tt,T[ f(t) I),where

t=°

gT T g  Q(f[T 1 ) Q (f[n 1 ) ... Q(fPt 1 ) for t=1,2,3.

t 0 0 ° "t°

The (A'P) as defined above (having uncountable state space and

finite action space) belongs to the class of problems analyzed by

Blackwell [1]. His analysis showed that an optinl,31 stationary policy

always exists and that the Howard Policy Improvement Routine may be

extended to this problem. However, in the finite state-finite action problems

the set of all stationary policies is finite and, therefore, the

Howard Policy Improvement Routine will produce ai optimal stationary

policy in a finite number of steps. In +he uncountable state-finite

Pction problem, the set of all stationary poiicie is uncountable and,

therefore, the Howard Policy Improvement Routine cannot, in general,

be used as a method for actually finding an optimal policy.



CONVMX-STAT I ONARY POLl CI ES

With F as the set of all stationary policies for (MWP), we

define the set rcF, of all convex-stationary policies for (t1,bP). as

{fcF : f-I (a K) is a convex set for each a KCA}

CONSTANT SEQUENCE POLICIES

Given the action space A - {ala 2 ...,aM}, we define A
N  AxAx...xA,

N-factors, N - 1,2,3,..., to be the set of all sequences of leingth N of

elements of A, and we define A = AxAxAx..., to be the set of all infinte

sequences of elements of A. For any finite sequence ScAN, N>i, we define

the sequence S KcA N K to be the sequence S K s,s,...,s, K-factors, and

S cAG, to be the sequence S -- s,s,s...... For any finite sequences S

and S we define A(S ; ) - A{S 1,S2 I to be the set consisting of the

2 1S 2 1two action sequences S I and S 2 and

A(S ;S r = A(Si;S 2 ) xA(S ;S2 )x..., to be the set of all infinite

sequences of elements of A(Si;S 2). For any finite sequence S - a1 ,

a2, .. o, aN, N>I, a.cA, we define

L(P) =Nil at pt 1

two at+ ),

for Te and P = P, to be the cost of starting at T and operating for
0

N time periods when using the i-j - entry in S, 1<i<N, as the action to
th

be taken at the i-h observation time. We say that L S(.) is the cost

of using the finite sequence S, for all initial T. If SEA , we

define the constant sequence policy (S), to be the policy which uses

the sequence S when starting at any initial PM, we define (A7) to

be the set of all such policies and we use V(S) (.), in place of

L (S)(.), for the cost of the policy (S).



IMMEDIATE RESULTS

LEMMA 1: The cost function, V for any policy (r) c (0)is

linear on

Proof: Let the sequence reAm be given by r - a1,a 2,a 3 9.. ... Now,

for any points T, P P"in such that P - XP + (i~)"for some

xc[o,lJ w.e nav (with Q(a)0- the Identity operator),

V ) = t cE C(Pt,a,.1 )(r)two

w two at( Q(0) Q(a 1) ... 01t+1>

cc o o -

+(-x t o (P1" Q(a 0) ... Q(a Tat+

orI V(r + (l-x) V ()

V (r) (XT + [1AP X V (r) (P + (l-x) V (r T' Q.E.D.

For any stationary policy f and any 10~, we define thie

sequence S(F,f) EA7,

S(T,f) - {a j, by a ~ f f)

T -PQ([tfP)), for t -0,1,2, ..., and P 0 Pt+1

We say that S(F,f) is the sequence generated at T when the stationary

policy f is used.

* LEMMIA 2: For any stationary policy f and any fc , we have
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Jf (F) - Vis-.f]) (, where f (F) is the cost of using

the stationary policy f ind starting at F.

Proof: By definition of S(Ff). Q.E.D.

THEOREM 1: The o, imal cost function is concave on

Proof: Let f be optimal. Lemmas 1 and 2 show that at each

Vf*(P a V(si-, f*]) (P) - I n f V.(S) n

Therefore, we see that at each point F& , Vf*(P)is the infimum over

a set of linear functions and hence Vf* is concave. Q.E.D.

Next we prove that the optimal cost function is continuious on

) by making use of the following representation. Let B be the set

of all bounded Baire functions on . Define a norm on B by

Ilvil - SUP Iv(()I , for any VcB.

Next, define the operator U t B-B by

(Uv) ) - min {LaK(P) + CV(Pr[aK])}.
acA

In Lemma 3, we state some results presented in Reference [I].

LEMMA 3.

(i) U is a contraction operator

(ii) For any VcB, the sequence U nUnV con;-'ges to the

optimal cost function Vf,.

(iii) Tl,. optimal cost function, Vf,, is the unique solution

to UV f = Vf,.

We now have the following Theorem.
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THEOREM~ 2: The optimal cost function is L&Mformly continuous

on

Proof: For any UEB, we have

un-U n u Vf* as rtom.

We also have

u nl (P)- amin ILa (-P + Qu (-PQ[a KJ)

for TcS. 1herefore, we see that since L a. is continuous for each

a KcA, each u nwill be continuous if u - u 0is continu~ous. The

convergence of J n -0 V f* is uniform because U is a contraction

operator, i.e.

Hun - Vf* II., n' I I uVf*ili Q.E.D.
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